Improved segmentation reproducibility in group tractography using a quantitative tract similarity measure.

نویسندگان

  • Jonathan D Clayden
  • Mark E Bastin
  • Amos J Storkey
چکیده

The field of tractography is rapidly developing, and many automatic or semiautomatic algorithms have now been devised to segment and visualize neural white matter fasciculi in vivo. However, these algorithms typically need to be given a starting location as input, and their output can be strongly dependent on the exact location of this "seed point". No robust method has yet been devised for placing these seed points so as to segment a comparable tract in a group of subjects. Here, we develop a measure of tract similarity, based on the shapes and lengths of the two tracts being compared, and apply it to the problem of consistent seed point placement and tract segmentation in group data. We demonstrate that using a single seed point transferred from standard space to each native space produces considerable variability in tractography output between scans. However, by seeding in a group of nearby candidate points and choosing the output with the greatest similarity to a reference tract chosen in advance--a method we refer to as neighborhood tractography--this variability can be significantly reduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach

This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a refer...

متن کامل

Tract Specific Reproducibility of Tractography Based Morphology and Diffusion Metrics

INTRODUCTION The reproducibility of tractography is important to determine its sensitivity to pathological abnormalities. The reproducibility of tract morphology has not yet been systematically studied and the recently developed tractography contrast Tract Density Imaging (TDI) has not yet been assessed at the tract specific level. MATERIALS AND METHODS Diffusion tensor imaging (DTI) and prob...

متن کامل

An improved similarity measure of generalized trapezoidal fuzzy numbers and its application in multi-attribute group decision making

Generalized trapezoidal fuzzy numbers (GTFNs) have been widely applied in uncertain decision-making problems. The similarity between GTFNs plays an important part in solving such problems, while there are some limitations in existing similarity measure methods. Thus, based on the cosine similarity, a novel similarity measure of GTFNs is developed which is combined with the concepts of geometric...

متن کامل

Diffusion Tensor Imaging-Based Research on Human White Matter Anatomy

The aim of this study is to investigate the white matter by the diffusion tensor imaging and the Chinese visible human dataset and to provide the 3D anatomical data of the corticospinal tract for the neurosurgical planning by studying the probabilistic maps and the reproducibility of the corticospinal tract. Diffusion tensor images and high-resolution T1-weighted images of 15 healthy volunteers...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2006